In recent columns we showed how linear regression can be used to predict a continuous dependent variable given other independent variables 1,2. When the dependent variable is categorical, a common ...
Logistic regression is often used instead of Cox regression to analyse genome-wide association studies (GWAS) of single-nucleotide polymorphisms (SNPs) and disease outcomes with cohort and case-cohort ...
Dr. James McCaffrey of Microsoft Research demonstrates applying the L-BFGS optimization algorithm to the ML logistic regression technique for binary classification -- predicting one of two possible ...
Dr. James McCaffrey of Microsoft Research uses code samples, a full C# program and screenshots to detail the ins and outs of kernal logistic regression, a machine learning technique that extends ...
Introduction: We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) ...
Logistic regression is a powerful technique for fitting models to data with a binary response variable, but the models are difficult to interpret if collinearity, nonlinearity, or interactions are ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results